Hieronder beschrijven we de werkwijze die bij voorkeur gehanteerd wordt om een oefening op extrema met nevenvoorwaarden op te lossen. De werkwijze wordt opgebroken in verschillende stappen en we illustreerden elke stap met de oplossing van oefening II.6.5.b.

De opgave Gegeven zijn de punten $A(1,0,1), B(0,1,1)$ en $C(1,1,0)$. Zij $P(x,y,z)$ een punt van het vlak met vergelijking $x + 2y - 3z = \frac{1}{4}$. Bepaal de coördinaten van P zodanig dat $|PA|^2 + 2|PB|^2 + 3|PC|^2$ extreem wordt, met behulp van de methode van Lagrange.

STAP 1 Onderscheid de nevenvoorwaarde(n) van de functie waarvan we extrema zoeken.

nevenvoorwaarde(n):
- $g_1(x,y,z) = x + 2y - 3z - \frac{1}{4} = 0$

functie:
$$f(x,y,z) = d(P,A)^2 + 2d(P,B)^2 + 3d(P,C)^2$$
$$= d((x,y,z),(1,0,1))^2 + 2d((x,y,z),(0,1,1))^2 + 3d((x,y,z),(1,1,0))^2$$
$$= (x - 1)^2 + y^2 + (z - 1)^2 + 2[x^2 + (y - 1)^2 + (z - 1)^2]$$
$$+ 3[(x - 1)^2 + (y - 1)^2 + z^2]$$
$$= 4(x - 1)^2 + 2x^2 + 5(y - 1)^2 + y^2 + 3(z - 1)^2 + 3z^2$$
$$= 6x^2 + 6y^2 + 6z^2 - 8x - 10y - 6z + 12$$

STAP 2 Stel de hulpfunctie f^* op en zoek de stationaire punten van f^*. Hierbij beschouw je f^* als een functie van zowel de veranderlijken van f als van de multiplicator(en) van Lagrange (griekse letters).

$$f^*(x,y,z,\alpha) = f(x,y,z) - \alpha g_1(x,y,z)$$
$$= 6x^2 + 6y^2 + 6z^2 - 8x - 10y - 6z + 12$$
$$- \alpha(x + 2y - 3z - \frac{1}{4})$$

Vervolgens zoeken we de stationaire punten, t.t.z. de oplossingen van $\nabla f^* = \vec{0}$

$$\begin{aligned}
\nabla f^* = \vec{0} \\
\text{D} \\
12x - 8 - \alpha = 0 \\
12y - 10 - 2\alpha = 0 \\
12z - 6 + 3\alpha = 0 \\
x + 2y - 3z - \frac{1}{4} = 0 \\
\frac{\text{D}}{}
\end{aligned}$$

$$(x,y,z,\alpha) = (\frac{5}{8}, \frac{6}{8}, \frac{5}{8}, \frac{1}{2})$$

We vinden dus precies één stationair punt, $(\frac{5}{8}, \frac{6}{8}, \frac{5}{8}, \frac{1}{2})$.

1
STAP 3 Onderzoek de aard van het stationair punt, zoals je dat zou doen wanneer \(f^* \) een vrije functie was. Bereken hiertoe \(d^2 f^* \), maar beschouw \(f^* \) nu als functie van enkel de veranderlijken van \(f \), de multiplicatoren van Lagrange zijn nu constant. Je verkrijgt bijgevolg geen term in \(dx^2 \) of \(dxdx \). Door de nevenvoorwaarde(n) te differentiëren, kan je \(dx_i(‘s) \) elimineren om hun aantal te reduceren.

\[
d^2 f^* = 12dx^2 + 12dy^2 + 12dz^2
\]

In het (enige) stationaire punt is deze kwadratische vorm positief definit. Dit betekent dat we een extremum hebben, dat een minimum is.

Eventueel kunnen we de nevenvoorwaarde differentiëren

\[
0 = dg_i = dx + 2dy - 3dz
\]

zodat

\[
dx = 3dz - 2dy
\]

Dit laat ons toe \(dx \) te elimineren uit \(d^2 f^ \).*

\[
d^2 f^* = 12(3dz - 2dy)^2 + 12dy^2 + 12dz^2 = 120dz^2 - 144dzdy + 60dy^2
\]

We krijgen dus \(r = 120, 2s = -144, t = 60 \) zodat

\[
s^2 - rt = -2016 < 0
\]

en \(r, t > 0 \) wat opnieuw aantoont dat we te maken hebben met een minimum.